\qquad
\qquad

Section 7.1 Extra Practice

$=$ positive x-tile	\square	$=$ negative x-tile
$=$ positive x^{2}-tile	\square	$=$ negative x^{2}-tile
$=$ positive y-tile	\square	$=$ positive $x y$-tile

1. Write a monomial multiplication statement for each set of algebra tiles.
a)

b)

2. Represent each of the following monomial multiplication statements with a model. Determine each product.
a) $(-3 x)(-2 x)$
b) $(x)(4 x)$
3. Determine the product of each pair of monomials.
a) $(-4 x)(2 x)$
b) $(3 y)(7 y)$
c) $(5 x)(-3 y)$
d) $(6 m)(-0.2 m)$
e) $\left(\frac{2}{3} n\right)(12 n)$
4. Write a monomial division statement for each set of algebra tiles.
a)

b)

\qquad
\qquad
5. Represent each of the following monomial division statements with a model. Determine each quotient.
a) $\frac{8 x^{2}}{4 x}$
b) $\frac{6 x y}{3 y}$
6. Determine the quotient of each pair of monomials.
a) $\frac{16 x^{2}}{-8 x}$
b) $\frac{15 x y}{3 y}$
c) $\frac{-9 m n}{-3 m n}$
d) $\frac{12 x y}{8 x}$
e) $\frac{-14.2 m^{2}}{2 m}$
7. A triangle has a base of $12 x \mathrm{~cm}$ and a height of $3.4 x \mathrm{~cm}$. What is the area of the triangle?
8. The area of a parallelogram is $25.6 x^{2} \mathrm{~m}^{2}$. Determine the height if the base is $8 x \mathrm{~m}$.
9. Marko's rectangular lawn has an area of $36 \times \mathrm{m}^{2}$. The length of the lawn is 9 m . Marko wants to add a circular cement patio. What is the area of the largest circular patio that he could add? Show all calculations. Use the symbol for pi, π, not an approximate value.

9 m

